Maintenance Prevention is not Preventive Maintenance!

By Brian Heymans M Ed

1972 MAINTENANCE

I remember buying my first car: a used, light blue, 1972 four-door Toyota Corona sedan, with manual transmission, and all in good working order. Once at home in my small studio apartment, I read the vehicle’s manual cover-to-cover. I discovered rather quickly that the service requirements to keep this big investment running were extensive, and expensive (at least for my budget at the time). I was a trainee accountant living on hope and soon discovered that I would also need to become a maintenance mechanic, as I could not afford to pay the service fees to keep my Toyota running.

I resolved to acquire a range of the tools necessary to service this car myself. After all, the owner’s manual graphically described just what had to be done, so I quickly assembled tools I would need... a timing light, feeler gauges, socket wrenches, an oil filter wrench (they get hot you know), an oil pan, grease gun, hydraulic jack. I would spend most of a Saturday working on my investment. Not only did I change the oil every 1000 miles, but I also changed the transmission fluid and differential oil, plus greased the suspension, steering mechanism and wheel bearings. I adjusted the timing by adjusting the distributor cap while aiming the timing light on a small groove in the timing chain pulley. I cleaned off the points; added distilled water to the battery; replaced the air filter above the carburetor; adjusted the valve gaps (while the engine was running with the tappet cover off while hot oil squirted out in small fountains). I adjusted the spark plug gaps (sometimes replaced them), replaced the disk brake pads and brake drum pads... You get the idea. (If you don’t recognize some of the terms mentioned above, you may be much younger than I.)

2013 MAINTENANCE

Fast forward to 2016 and my 2013 Toyota RAV 4. The list of maintenance services required to keep this car running dwarfs my Corona’s list, and I never handle the maintenance now because I can’t. Fortunately the list is a lot shorter: an oil change every 5000 to 7000 miles accompanied by many inspections and a few other things I could never get to anyway. So much has changed over these past 44 years and car design is no exception. If you were to open the hood of the RAV 4, you would discover, as I did, that most of the gizmos in there are inaccessible and very different. Technology alone has improved the car altogether. Today’s automotive technology has made cars safer, more reliable, and more maintenance-free because the industry has re-designed many of the components and systems, using a concept known as Maintenance Prevention.
MAINTENANCE PREVENTION
This evolution to less maintenance has developed because of the need to ensure longer equipment life and lower life cycle cost. Several definitions of maintenance prevention follow:

• **Definition 1:** “The goal of maintenance prevention activities is to reduce maintenance costs and deterioration losses in new equipment by considering past maintenance data and the latest technology when designing for higher reliability, maintainability, operability, safety and other requirements. ... It means designing and installing equipment that will be easy to maintain and operate.”

• **Definition 2:** “The goal of maintenance prevention design is equipment that will not break down or produce defective parts. ... Its purpose is to take whatever steps are necessary at the design stage to create maintenance free equipment.”

• **Definition 3:** “MP design aims to produce equipment that operates at an optimal level of efficiency and can be maintained at that level, which means that its total cost and life cycle cost will be minimized.”

My definition.....**Maintenance prevention is the deployment of improved technology to reduce or eliminate many forms of maintenance activity by ensuring that the design of the equipment enables standard maintenance practices to be performed faster, cheaper, and more effectively.**

Several concepts are inherent to the practice of maintenance prevention, the most important of which is prevention. The cost of downtime is typically underestimated, and many companies see maintenance on equipment as a cost that needs to be reduced. However, the investment in the development of equipment that does not break down is not made. So when the equipment breaks down, the resources necessary to fix the equipment are unavailable. So a prevention mentality is essential in the application of methods to assure equipment run-time.

LIFE CYCLE COST
Most companies do not consider the total (life cycle) cost of equipment. Life cycle cost includes all design, capital, maintenance, refurbishment, repair, and parts replacement. One could also include the cost of lost production as a result of breakdowns and preventive maintenance. Poorly designed equipment, from a maintenance prevention perspective, results in higher repair and preventive maintenance costs later. The strategy of maintenance prevention is to reduce all life cycle costs, and equipment downtime, plus increase the total operating life of equipment which would result in an improved return on the initial capital investment.
Sad to say it though, many other types of industrial equipment have not gone through the radical changes the automobile has. I still see new equipment in factories today poorly designed to reduce or eliminate maintenance activity. Past designs focused on performance and function, not on the long term life of the equipment. Design has not emphasized operability and maintainability. Reliability has not been seen as a factor in long term performance. Lack of Maintenance Prevention design hampers equipment improvement projects that ease cleaning, lubrication, inspection, adjustments, and reduction of minor stoppages. In addition, a number of factors are prevalent in management thinking that are short term in nature, for example:

- Reliability is not considered as part of the design.
- Management often seeks lowest procurement cost, so prevention elements are not considered.
- Budgeting for and deployment of maintenance practices are poor.
- Little consideration is given to disposal, environmental, and recycling costs.
- There is a lack of cross-functional collaboration during the design phase between design engineers, maintenance personnel, and production personnel.

So the design or re-design of equipment must result in the following:

- MP design must improve accessibility and ease to perform maintenance activity. This will reduce downtime plus reduce cost. This should apply to new equipment design and refurbishment of old equipment
- Design must reduce maintenance activity. This will reduce cost and equipment downtime.
- Design must eliminate maintenance activity by utilizing new technologies.

A new design ethos must be adopted to ensure...

- Maintenance reduction and elimination.
- Reduction of the cost of maintenance practices as a direct result of the design features of the equipment.
- Equipment failure or product defect production is automatically shown to exist within the cycle time of a single part. This is the deployment of Jidoka or mistake proofing.
- Enhancement of the equipment life cycle and lowering of the life cycle cost.

The difference between my 1972 Toyota Corona and my 2013 RAV 4 is evidenced in the elements mentioned above. It goes without saying the old equipment can be redesigned and updated to contain some maintenance prevention features, but a number of design protocols need to be incorporated into that re-design, and these are the same protocols to be used in the design of new equipment. The process of designing new equipment with these maintenance prevention features in mind starts with the “customer” or user of the equipment. Clear design features that
include greater maintenance accessibility and reduced or eliminated maintenance activity
must be a user-defined set of attributes, so finding a mechanism for defining these
characteristics is critical. One very useful method to define these characteristics is Quality
Function Deployment. This method, QFD, is typically used to define the relationship
between the qualitative attributes of a product and the production process or features. This
method can be adapted to show the relationship between the performance attributes of
improved uptime, reduced maintenance downtime, and the costs I referred to above, with
the design features that come from a “prevention” mentality.
Within the component design process, preventing failure is critical, but failure does occur as
a phenomenon, so creating conditions for the automatic discovery of potential failure is
essential using mistake proofing methods in equipment design. The Japanese call this
“jidoka” and as a process or piece of equipment is working, you will want the equipment to
be designed to recognize potential failure before it occurs and then provide a warning, or
stop the operation to prevent catastrophic failure. The ultimate is that it will self-correct to
avoid the failure altogether.
Once a design is being considered, the next method that can be deployed is Failure Mode
Effect Analysis (FMEA). This method is a risk analysis tool to determine the potential risks of
failure of all design features. Its use will help determine the potential elements of any
equipment that might fail, and the effects of that failure on cost, production, etc. It is
standard practice to use FMEA’s in aircraft and automotive component design.
Another design tool is the use of Value Analysis, Value Engineering or VAVE as it is known.
Value analysis, very simply put, is the process of reducing the cost and weight of materials
in a component - less materials or parts, less opportunity for breakdown, and less cost.
Value engineering is doing the same for the manufacturing processes needed to make that
component. How can we simplify, reduce production steps and methods, and so reduce
manufacturing cost? The use of the examination tools in VAVE will help to reduce overall
cost of equipment, but can also be used to design components for a longer life cycle.
This is an exciting area of continuous improvement, one every engineer should relish,
whether in designing equipment, or in its refurbishment, and certainly in its maintenance. I
think about it every time I take my RAV 4 in for service... there is less maintenance work,
less cost to me, and I don’t do it as frequently. Now it’s every six months, and I can just wait
for it; I don’t have to leave it there overnight, like I may have had to do 44 years ago. These
concepts are not difficult to understand. After all I was trained to be an accountant and an
organizational change expert, not an engineer, and I think I “get it.”

NOTE: AME is running a public workshop on this topic. It will be a “hands-on” opportunity
to learn these methods on real equipment. This workshop will be presented by DRIVE Inc, a
full service lean consulting company at one of their clients, the International Environmental
Corporation (IEC) on April 5 and 6, 2017, in Oklahoma City, OK. See the details here:
http://www.ame.org/event/maintenance-prevention-product-design-and-equipment-
maintenance-0
Brian Heymans is the former President of Kaizen Institute of America. He has over 38 years of experience in manufacturing organizations at executive levels. His experience spans the areas of world-class manufacturing design and implementation, operations management, business strategy, human resource development, re-engineering strategies and organizational development. His consulting focus is large-scale organizational change processes and the integration of change initiatives with corporate business strategy. He currently collaborates with DRIVE, Inc. on consulting services and lean deployment development.

If you would like to know more about us, please visit our website at www.driveinc.com or contact Paul Eakle at 865-323-3491.